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ABSTRACT RESULTS

Knowledge graphs are a natural language processing technique that
can be useful in automatically extracting information from scientific
articles and in generating hypotheses. This project explores the effect
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LABELED CORPUS IN PLANT BIOLOGY

In order to evaluate model performance

CONCLUSIONS
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NON-NEURAL BENCHMARKS correspond with the relative “closeness” of their topics to the topic
A simple rule-based method, but specific to plant biology on which the models are being applied
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